
CADQL
A Transformer-Based Architecture for 

CAD
 Model Generation and Validation

(501) 743-9680 | crw@upsln.com



Creating AI-driven CAD systems is a difficult challenge, given how complex 
geometric modeling and
 manufacturing rules can be. In this paper, we introduce 
CADQL (CAD Query Language), a cutting-edge
 transformer system that brings 
together geometric understanding and natural language processing to
 create and 
validate CAD models. Our approach uses special attention mechanisms, multi-
modal encoders,
 and thorough validation checks to address the unique problems 
in CAD generation.

Background and Relevant work

Technical Foundations

CAD model generation requires understanding of various geometric primitives (points, curves, 
surfaces)
and operations (extrusion, boolean operations, fillets). Traditional CAD systems use 
boundary
representation (B-rep) and constructive solid geometry (CSG) to maintain geometric 
validity. Recent
approaches have attempted to apply machine learning to this domain, but 
faced challenges in maintaining
geometric consistency and manufacturing constraints.

Current Approaches and Limitations

Current approaches to AI-driven CAD generation typically fall into three categories: rule-based 
systems that
encode expert knowledge, graph-based approaches that represent CAD history 
as operation trees, and
deep learning approaches that attempt to learn geometric 
relationships. CADQL builds upon these
foundations while introducing novel attention 
mechanisms specifically designed for geometric
understanding.

Novel Contributions

Our work advances the field through:


 Unified geometric attention mechanisms


 Multi-modal encoding strategy


 Robust validation pipeline


 Manufacturing-aware constraints

1



Introduction

1.1 Research Objectives

Develop a transformer-based architecture for CAD model generation

Create robust validation mechanisms for geometric and manufacturing constraints

Bridge the gap between natural language and CAD operations

Establish a framework for future AI-driven CAD development

1.2 Data representation

The creation of CAD models traditionally requires significant expertise in both design principles 
and specific
CAD software platforms. While recent advances in artificial intelligence have 
shown promise in various
domains, the application of deep learning to CAD model generation 
presents unique challenges due to the
precise nature of geometric constraints and 
manufacturing requirements. CADQL aims to bridge natural
language descriptions and precise 
CAD operations through a specialized transformer architecture. The
system focuses on 
converting textual commands into workable CAD operations, promoting geometric and 
topological consistency, addressing manufacturing feasibility, and offering a robust validation 
pipeline.

1.3 Paper Structure

This paper is organized as follows: Section 2 provides technical background and related work, 
Section 3
details the CADQL architecture, Section 4 describes the implementation, Section 5 
presents validation and
testing approaches, and Section 6 discusses results and future 
directions.

2



CADQL Architecture

2.1 Core Components

CADQL's architecture consists of several specialized components

 Unified Geometric Attentio

 Multi-scale geometric feature processing

 Flash attention optimization for efficient computation

 Adaptive sparsity patterns based on geometric complexity

 Built-in geometric bias support

 Block-based processing for large assemblie

 Multi-Modal Encoder

 CAD Encoder for processing geometric primitives

 Text Encoder for natural language commands

 Function Call Encoder for operation sequences

 Hybrid Positional Encoder combining multiple encoding strategie

 Specialized Decoder

 CAD Operation Decoder for generating geometric operations

 Function Call Decoder for parameter prediction

 Structured Output Decoder for hierarchical generatio

 Validation Pipelin

 Geometric validation for physical feasibility

 Topological validation for model consistency

 Manufacturing constraint validation

3



INPUT

Generic Data Natural Language Text Function Calls

tokenization

STEP Tokenizer CADQL Tokenizer Token Processor

ENCODING

CAD Tokens

CAD Encoder

Positional Embedding

Function Embedding

Geometric Embedding

Multi-Modal Fusion

Encoder Components

Encoder Hidden States

Attention

Geometric Relations

Geometric Attention

Object Relations

Cross-Object Attention

Spatial Relations

Spatial Attention

Decoding

Attention Context

CAD Decoder

Function Call Decoder

Structured Output Decoder

Parameter Generator

Constraint Generator

Validation Module

Decoder Components

Final CAD Operations

Output

Geometric Constraints CAD Operations Operation Parameters

Validation

Geometric Validator Topology Validator

Validated CAD Model

4



2.2 Tokenization System

An essential part of CADQLʼs design is the tokenization system, which serves as the bridge 
between humanreadable
commands and the internal representations that our model 
manipulates. During tokenization, each
instruction is decomposed into discrete, semantically 
rich tokens that align with the modelʼs conceptual
understanding of both linguistic and 
geometric constructs.


tokenization

STEP Tokenizer CADQL Tokenizer Token Processor

CAD Tokens

When a user supplies a description—such as requesting the creation of a cylindrical surface or 
the
application of a fillet operation—the system first identifies relevant keywords, parameters, 
and contextual
clues. These elements are then encapsulated within token objects, each 
annotated with the pertinent type,
such as PRIMITIVE, OPERATION, or CURVE, while storing 
references to dimensions, constraints, or
geometry data. This structured approach ensures that 
every meaningful piece of data advances through
the model in a consistent, trackable form.




For instance, a PRIMITIVE token might capture the essential attributes of a box—its width, 
height, and depth
—while an OPERATION token could govern transformations or boolean 
steps. Tokens categorized under
CONSTRAINT or DIMENSION represent critical numerical and 
relational data, guaranteeing that subsequent
geometry handling can integrate these 
parameters seamlessly. By nesting tokens within a hierarchical
structure, CADQL maintains a 
clear lineage of dependencies, enabling the validation pipeline to reference
both immediate 
and ancestral relationships across merged modeling contexts.




Internally, these tokens undergo various transformation passes, guided by the architectureʼs 
specialized
attention layers. Each pass refines the raw token data into intermediate forms that 
increasingly approximate
valid, manufacturable shapes. Consequently, the tokenization 
process functions as more than mere text
parsing: it is the active interpretation of domain-
specific knowledge, folding constraints, geometry
references, and parametric data into tangible 
units of modeling logic.

5



2.3 Architecture Details

In this paper, we provide an examination of CADQLʼs architectural components, illustrating 
how
geometric and textual information converge to form a coherent modeling workflow. By 
intertwining multimodal
inputs, specialized attention layers, and validation mechanisms, 
CADQL demonstrates how natural
language instructions can be systematically interpreted to 
produce valid CAD artifacts.




This section probes the foundational elements of CADQL, detailing how geometry-aware layers 
interact with
embedded linguistic constructs to facilitate precise operation sequencing. Rather 
than structuring these
processes as isolated lists, we focus on the underlying theories that 
inform each modeling stage and how
these theories manifest through iterative data 
transformations.

2.4 Attention Mechanisms

CADQL implements several specialized attention mechanisms

 Geometric Attentio

 Processes spatial relationships between entitie

 Maintains geometric constraints

 Incorporates manufacturing knowledg

 Cross-Object Attentio

 Analyzes relationships between components

 Maintains assembly constraints

 Ensures proper feature orderin

 Function Use Attentio

 Learns patterns in CAD operation sequences

 Validates operation parameters

 Predicts operation success probability

6



Implementation

3.1 Core Components Implementation

In implementing CADQL, we embed geometry-aware features at each critical stage of the data 
pipeline. The
core model employs advanced attention algorithms capable of identifying and 
preserving spatial
relationships while concurrently resolving linguistic ambiguities. Through 
these attention modules, the
tokenized commands and geometry references are aligned, 
ensuring that the processed output reflects
both domain-specific constraints and the original 
design intent. Collectively, this synergy of textual and
geometric data guides the system toward 
a well-defined series of commands, each validated against
manufacturing considerations.




In code, the transition from token creation to final command generation involves iterative 
validations within
each sub-module. The geometry layers check for topological soundness, the 
linguistic layers assess
semantic compatibility, and specialized handlers verify compliance with 
manufacturing rules. By merging
these validation steps in sequence, the CADQL pipeline forms 
a resilient transformation approach, capable
of gracefully handling incomplete instructions or 
subtle conflicts among tokens.

3.2 Performance Enhancements

Flash attention implementation

Batch processing strategies

Memory management techniques

Parallel computation approaches

7



Geometric Processing & Validation

4.1 Geometric Processing Pipeline

The system includes robust geometric processing capabilities

 Surface Processin

 B-spline surface generation and modification

 Curvature analysis and optimization

 Continuity validatio

 Curve Processin

 B-spline curve generation

 Curve-surface intersection analysis

 Tangency and continuity managemen

 Topology Handlin

 Face-edge-vertex relationship management

 Boundary representation consistency

 Non-manifold detection and handling

4.2 Validation System

CADQLʼs validation suite uses various tests to evaluate model correctness and responsiveness 
to user
instructions. The system also identifies geometry issues to ensure reliability for 
industrial applications.

Validation

Geometric Validator Topology Validator

Validated CAD Model

8



Discussion

5.1 Capabilities and Limitations

Despite these robust capabilities, certain theoretical factors continue to constrain the system. 
First, reliance
on curated training data restricts adaptation to niche or unconventional 
geometry, as well as domains with
limited examples. Second, real-time performance on very 
large assemblies is not yet assured and likely
requires more advanced optimization layers. 
Finally, highly intricate freeform surfaces require specialized
modules or hybrid approaches that 
combine conventional geometry engines with data-driven solutions.

5.2 Future Directions

We propose several hypothesis-driven directions for expanding CADQL:

 Physics Integration: Embedding real-time physics simulations will likely refine the systemʼs 
ability to
validate mechanical feasibility, improving design feedback.

 Manufacturing Process Planning: By deepening integrations with rule-based knowledge 
sources,
we anticipate a more comprehensive verification of manufacturability, including 
emerging production
techniques.

 Collaborative Design Environments: Multi-user interactions, possibly combined with 
version
control or distributed systems, may yield flexible design workflows that evolve 
collaboratively.

 Material Property Handling: Encoding materials and their constraints directly within 
geometry
tokens could strengthen the synergy between design choices and final product 
performance.

Overall, these ongoing and future developments are expected to further validate CADQLʼs 
theoretical
underpinnings, paving the way for a more robust, adaptive architecture that 
addresses the evolving demands of
modern computer-aided design.

9



Conclusion

CADQL represents a significant step forward in AI-driven CAD generation, combining 
transformer
architectures with geometric understanding and manufacturing constraints. The 
system's multi-modal approach and specialized attention mechanisms provide a robust 
foundation for future development in
automated design and manufacturing.

10



References

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, 
I.
(2017). "Attention Is All You Need"

Text2CAD: Generating Sequential CAD Models from Beginner-to-Expert Level Text Prompts


Mohammad Sadil Khan∗†1,2,3, Sankalp Sinha∗1,2,3, Talha Uddin Sheikh1,2,3,
Didier Stricker1,2,3, 
Sk Aziz Ali1,4, Muhammad Zeshan Afzal1,2,3
1DFKI 2RPTU Kaiserslautern-Landau 3MindGarage 
4BITS Pilani, Hyderabad

OpenCASCADE Documentation (2024)

Appendix A: System Requirements

Software Dependencies

 PyTorch >= 1.12

 OpenCASCADE >= 7.6

 Transformers library

 NumPy, Rich (utilities)

Hardware Requirements

 CUDA-capable GPU recommended

 Minimum 16GB RAM

 100GB storage for model files


